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Abstract

The topological sub-structural molecular design (TOPS-MODE) approach has been applied to the study of mutagenic properties in a

heterogeneous set of dental monomers. A model able to describe close to 90% of the experimental variance in the values for mutagenic

activity of 41 dental monomers through genetic algorithm was developed with the use of the mentioned approach. Also, a study for the

determination of the optimal number of variables in the equation and potential outliers was carried out. Finally, the TOPS-MODE approach

was used to derive the contribution of different fragments to the mutagenic activity.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The aim of toxicological testing is to predict possible

adverse effect in humans when exposed to, e.g. chemicals

whether used as industrial chemicals, pharmaceuticals or

polymer or their monomers. Animal models are predomi-

nantly used in identifying potential chemical hazards. The

use of laboratory animals raises ethical concern. For that

reason, the theoretical models represent an alternative to the

assaying of chemical compounds for determining their

toxicological properties on living organisms in the labora-

tory. The quantitative structure–toxicity relationships

(QSTR) are predictive tools for a preliminary evaluation

of the hazard of chemical compounds by using computer-

aided models [1–7]. The constructions of these models
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consist of data sets of compounds, their computational

analysis, hypothesis generation and toxicity prediction,

made and stored on a computer. By this means, the

expensive, time-consuming and in many cases animal

aggressive bioassays are made only after exploring the

initial concepts with computational models. Thus, QSTR

models have great potential for designing new dental resins

that will possess favorable biocompatibility profiles. The

method is somewhat new in dental materials research, but

QSAR have been widely applied to rational drug design and

successfully used to predict the structures of novel

compounds and protein properties [8–12].

The idea of employing computational approaches for

predicting the mutagenicity of novel chemicals such as

polymer and their respective monomers [13] was developed

by us in recent publications [14–16]. In these works we

demonstrated the value of the TOPS MODE approach in this

area. However, in order to demonstrate the generality of this

approach it is absolutely necessary to carry out this study in

dental monomers using a heterogeneous set of compounds.
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M.P. González et al. / Polymer 46 (2005) 2783–27902784
2. Materials and methods
2.1. The TOPS-MODE approach

The TOPS-MODE approach is based on the calculation

of the spectral moments of the so-called bond matrix [17,

18], whose theoretical basis has been described in previous

reports [19–21]. Nevertheless, an overview of this approach

will be given below.

The bond matrix is defined as a square and symmetric

matrix whose entries are ones or zeros if the corresponding

bonds are adjacent or not. The order of this matrix (m) is the

number of bonds in the molecular graph, being two bonds

adjacent if they are incident to a common atom. The spectral

moments of the edge adjacency matrix are defined as the

traces, that is, the sum of the main diagonal, of the different

powers of such a matrix.

To apply the present approach to the structure–toxicity

relationship, the following steps should be followed. First,

to select an adequate training set with certain structural

diversity. Second, to draw the hydrogen depleted molecular

graphs for each molecule of the training set. The third step is

to differentiate the molecular bonds with appropriate

weights. The fourth, to compute the spectral moments of

the bond matrix for each molecule of the data set. Fifth, to

find a qualitative structure–toxicity relationship by using a

regression analysis:

P Z a0m0 Ca1m1 Ca2m2 Ca3m3 C.akmk Cb (1)

where P is the studied property, in our case, the slopes of

revertants vs. nanomoles of test chemical in the Salmonella

test strain TA100 with the natural logarithm of the slopes (ln

TA100), mk is the kth spectral moment, and the aks are the

coefficients obtained by the linear regression. Sixth, to test

the predictive capacity of the regression model by cross-

validation procedures and an external prediction set.

Finally, to compute the contribution of the different

substructures to determine their quantitative contribution

to the mutagenicity of the molecules studied.
2.2. Selection of bond weights and calculation of molecular

descriptors

Taking into consideration the QSAR’s for structure–

mutagenicity correlation in dental monomers described

previously by Yourtee et al. and our recent works [13–16],

several bond weights such as hydrophobicity [22], polar

surface area [23], molar refraction [24], Gasteiger-Marsilli

atomic charge [25], polarizability [26], and van der Waals

atomic radii [27] were used for computing the spectral

moments of the bond matrix. Due to the fact that most of the

approaches for computing physicochemical properties from

fragment are based on atom-additive methods, several

transform from atomic to bond contributions were carried

out. The way in which these atomic contributions were
transformed into bond contributions have been described by

Estrada et al. [28]:

wði; jÞZ
wi

dj

C
wj

di

(2)

where wi and di are the atomic weight and vertex degree of

the atom i. The calculation of the descriptors was carried out

with the computer software MODESLAB 1.0 [29]. The

input of the software consists of SMILES codes for each

compound [30]. We calculated the first 15 spectral moments

(m1Km15) for each bond weight and the number of bonds in

the molecules (m0). In this sense, 81 molecular descriptors

(variables) were included in the analysis.
2.3. Computation of substructure contributions

The quantitative contribution (negative or positive) of a

given substructure to the mutagenic activity of dental

monomers was calculated. The general methodology used in

this computational approach is as follows. In the first step all

the substructure whose contribution we would like to

determine were selected. The spectral moments for each

substructure were calculated and their contributions to the

mutagenic activity were obtained by substitution of their

spectral moments in the regression model.

In this study, 18 fragments were selected to compute

their contribution to the mutagenicity. Considering those

fragments with high or poor contribution to the mutagenic

activity, new hypothetical polymers with or without

mutagenic effect of their monomers could be designed.
2.4. Data set and computational strategies

The series of 53 dental monomers given in Table 1 for

which mutagenicity data was reported in the literature [14–

16] was used in the current work. The mutagenic parameter

studied here is the slopes of revertants vs. nanomoles of test

chemical in the Salmonella test strain TA100 with the

natural logarithm of the slopes (ln(TAs100)) used in the

QSARs models.

All statistical analysis and data exploration was

carrying out using the Statistic 6.0 [31]. The most

significant parameters were identified from the data set

using genetic algorithm (GA) method [32]. The GA is a

technique developed for model building. It begins with

an initial population of QSAR models using randomly

selected features. Least squares regression is used to

generate the coefficients. The population is evolved by

building new models based on variables of two better-

scored models. The worst models in the populations are

replaced by new models. The average fitness of the

models increases as evolution proceeds. The equation

term type was set to linear polynomial and the mutation

probability was specified as 50%. The length of the

equation was set to six terms and a constant. The



Table 1

Data set of dental monomers used in the current study

No. Compound ln TA100 Exp

1 4-methylphenyl glycidyl ether 0.860

2 4-t-butylphenyl glycidyl ether K0.362

3 3,4-dimethoxyphenylpropylene oxide K0.930

4 p-benzylphenylpropylene oxide K1.080

5 p-biphenylpropylene oxide 0.620

6 R-glycidyl alcohol K0.514

7 phenylpropylene oxide K0.536

8 p-methoxyphenylpropylene oxide K0.896

9 p-methylphenylpropylene oxide K0.111

10 phenoxypropylene oxide 0.172

11 R-naphthyl glycidyl ether 2.230

12 S-naphthyl glycidyl ether 2.100

13 1.3-cyclohexadiene oxide K2.160

14 3-pyranoylidene oxide K3.320

15 4.5-cyclohexadiene oxide K3.150

16 cis-3.6-dibromocyclohexene oxide K0.530

17 cis-1.3-cyclohexatriene dioxide K2.350

18 cyclohexene oxide K3.190

19 cyclopentene oxide K3.950

20 trans-3.6-dibromocyclohexene oxide K0.450

21 trans-1.3-cyclohexadiene dioxide K4.830

22 trans-1.3-cyclohexatriene dioxide K2.550

23 trans-4.5–dibromocyclohexene dioxide K4.020

24 urethane dimethacrylate K3.470

25 glicidyl methacrylate K1.920

26 bisphenol A dimethacrylate K4.510

27 glicidyl acrylate K0.750

28 2-chloro-3-dichloromethyl-4-methoxyfur-2-enone? 8.650

29 2-chloro-3-dibromomethyl-4-hydroxyfur-2-enone 8.610

30 2-bromo-3-dibromomethyl-4-hydroxyfur-2-enone 7.970

31 2-chloro-3-chloromethyl-4-hydroxyfur-2-enone 6.360

32 2-chloro-3-dibromomethylfur-2-enone 5.200

33 2,3-dichloro-4-hydroxyfur-2-enone 4.090

34 2-chloro-3-chloromethylfur-2-enone 1.590

35 2-chloro-3-bromomethylfur-2-enone 1.370

36 2,3-dichloro-4-methoxyfur-2-enone 0.990

37 2-chloro-3-methyl-4-ethoxyfur-2-enone 0.740

38 2-chloro-3-methyl-4-hydroxyfur-2-enone 0.410

39 2-bromo-3-methyl-4-hydroxyfur-2-enone 0.410

40 3-chloro-4-ethoxyfur-2-enone K0.220

41 2-chloro-4-hydroxyfur-2-enone K1.600

42 3-methyl-4-hydroxyfur-2-enone K3.510

43 4-methoxyphenyl glycidyl ether 0.115

44 o-methoxyphenylpropylene oxide K0.576

45 4-hydroxy-3-methoxyphenylpropylene oxide K1.060

46 S-glycidyl alcohol K1.040

47 4-pyranoylidene oxide K3.960

48 norbornene oxide K4.370

49 vinyl cyclohexene dioxide K3.060

50 2-chloro-3-dichloromethyl-4-hydroxyfur-2-enone 8.750

51 2-bromo-3-bromomethyl-4-hydroxyfur-2-enone 6.040

52 2-bromo-3-chloromethylfur-2-enone 1.370

53 2,3-dichlorofur-2-enone 0.110

M.P. González et al. / Polymer 46 (2005) 2783–2790 2785
population size was established as 300. All equations

were sorted by a statistical term, the correlation

coefficients (R2). The best equations were saved for subse-

quent studies for the examination of the regression coefficient,

the standard deviation and the significance of the model.
2.5. Model validation

The last and most important part of QSAR model

development is the validation. Most of the QSAR modeling

methods implement the leave-one-out (LOO) cross-vali-

dation procedure. The outcome from the cross-validation

procedure is cross-validate R2 (q2), which is used as a

criterion of both robustness and predictive ability of the

model [33].

Although, the low value of q2 for the training set can

indeed serve as an indicator of a low predictive ability of a

model, the opposite is not necessarily true. Indeed, the high

q2 does not imply automatically a high predictive ability of

the model. In order to both develop the model and validate

it, one needs to split the whole available data set into the

training and test set. Several methods can be used for this

purpose. They include random selection, selection by

groups of compounds where the whole group is included

into training or a test set, selection of training set

compounds with major features varying in a systematic

way, etc. [34,35]. Here, we used a K-means cluster analysis

for the mentioned selection of 11 compounds of the whole

data set to perform the test set. These compounds were

never used to develop the prediction function.

2.6. K-means cluster analysis

The k-MCA has been used in training and predicting

series design [36–38]. The idea consists of carrying out a

partition of the whole data set of compounds in several

statistically representative classes of chemicals. Thence,

one may select from the member of all these classes of

training and predicting series. This procedure ensures that

any chemical classes (as determined by the clusters derived

from k-MCA) will be represented in both compounds series

(training and predicting). It permits the designing of both

training and predicting series, which are representative of

the entire ‘experimental universe’. Fig. 1 graphically

illustrates the above-described procedure where a cluster

analysis was carried out to select a representative sample for

the prediction and training sets. A k-MCA splits dental

monomers in four clusters with 10, 22, 8, 13 members and

standard deviations of 0.62, 0.73, 0.53, and 0.81, respect-

ively. Selection of the training and prediction set was

carried out by taking, according to the Euclidean distance,

compounds belonging to each cluster. To ensure a

statistically acceptable data partition into several clusters,

we took into account the number of members in each cluster

and the standard deviation of the variables in the cluster (as

low as possible). We also made an inspection of the standard

deviation between and within clusters, the respective Fisher

ratio and their p-level of significance considered to be lower

than 0.05 [38]. All spectral moments (from m0 to m15) were

used in both analysis; all variables show p-levels !0.05 for

the Fisher test, and the results are depicted in Table 2.

The main conclusion should be achieved from k-MCA:



Fig. 1. Training and predicting series design throughout k-MCA.
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the structural diversity of several up-to-date known dental

monomers (as codified by TOPS-MODE descriptors) may

be described at least by four statistically homogeneous

clusters of chemicals. Anyhow, further conclusions about

the mechanistic and molecular signification of these clusters

seem to be speculative. Mainly, if it is considered that

k-MCAs based partitions of data which consider not only

4 but also 3 or 5 clusters are statistically significant too

(results not reported). However, the use of the k-MCA

analysis here points to a structurally representative distri-

bution of chemicals into training and predicting series [36].
3. Results and discussion

Once we perform a representative selection of training

series it could be used to fit the model. The observed,

predicted, residual and deleted residual of mutagenic

activity values of dental monomers used in the training set

appear in Table 3.

The best predictive model obtained for the mutagenic

activity of the dental monomers is given below, together

with the statistical parameters of the regression.
Table 2

Main results of the k-means cluster analysis for the dental monomers

Variance analysis

Spectral moments Between SSa Within SSb

Statistics for Active compound clusters (k-MCA 1)

m
Dip
6

58.60 23.39

m
Dip
14

62.99 19.00

mPS
3

65.00 16.99

mPS
5

65.15 16.84

mGM
5

62.28 19.71

mGM
15

64.83 17.16

a Variability between groups.
b Variability within groups.
c Level of significance.
ln TA100 ZK0:189C4:06!10K3m
Dip
6 K8:11

!10K9!m
Dip
14 K0:004!mPS

3 C1:16

!10K5!mPS
5 K0:015!mGM

5 (3)

N Z 42; S Z 1:183; R2 Z 0:892;

F Z 59:722; p!0:0001; q2 Z 0:848; Scv Z 1:412

where, N is the number of compounds used in the training

set, R2 is the correlation coefficient, S is the standard

deviation of the regression, Scv is the standard deviation of

the leave-one-out cross-validation, q2 is the correlation

coefficient of the leave-one-out cross-validation, p is the

significance of the variables in the model and F is the Fisher

ratio at the 95% confidence level. The variables included in

the model are designated as follows: the sub-index

represents the order of the spectral moment and the super-

index the type of bond weight used, i.e. Dip for dipole

moment, PS for polar surface and GM for Gasteiger Marsili

charges.

The model selection was subjected to the principle of

parsimony. This principle calls for using models and
Fisher ratio (F) p-level !c

19.97 0.0001

28.34 0.0001

33.65 0.0001

34.07 0.0001

26.74 0.0001

33.13 0.0001



Table 3

The observed, predicted, residual and deleted residual of mutagenic activity values of dental monomers used in the training set

No. Obs (ln (TA100)) Pred. (ln (TA100)) Residual Deleted residual

1 0.860 0.140 0.720 0.763

2 K0.362 K0.372 0.010 0.013

3 K0.930 0.668 K1.598 K1.751

4 K1.080 K0.097 K0.983 K1.143

5 0.620 K0.020 0.640 0.699

6 K0.514 0.711 K1.225 K1.501

7 K0.536 K0.523 K0.013 K0.014

8 K0.896 0.072 K0.968 K1.029

9 K0.111 K0.566 0.455 0.491

10 0.172 0.183 K0.011 K0.012

11 2.230 0.602 1.628 1.727

12 2.100 0.602 1.498 1.589

13 K2.160 K1.834 K0.326 K0.349

14 K3.320 K2.348 K0.972 K1.023

15 K3.150 K1.350 K1.800 K1.975

16 K0.530 K0.304 K0.226 K0.263

17 K2.350 K1.956 K0.394 K0.424

18 K3.190 K4.698 1.508 1.655

19 K3.950 K5.669 1.719 1.994

20 K0.450 K0.304 K0.146 K0.170

21 K4.830 K6.336 1.506 1.873

22 K2.550 K1.956 K0.594 K0.640

23 K4.020 K2.515 K1.505 K2.426

24 K3.470 K3.330 K0.140 K0.251

25 K1.920 K1.793 K0.127 K0.135

26 K4.510 K3.794 K0.716 K1.338

27 K0.750 K1.588 0.838 0.915

28 8.650 8.070 0.580 0.756

29 8.610 8.070 0.540 0.704

30 7.970 8.132 K0.162 K0.235

31 6.360 3.754 2.606 3.111

32 5.200 6.494 K1.294 K1.554

33 4.090 1.938 2.152 2.538

34 1.590 1.964 K0.374 K0.422

35 1.370 1.787 K0.417 K0.471

36 0.990 1.349 K0.359 K0.412

37 0.740 K0.158 0.898 0.955

38 0.410 K0.158 0.568 0.604

39 0.410 K0.034 0.444 0.526

40 K0.220 K0.096 K0.124 K0.135

41 K1.600 0.400 K2.000 K2.408

42 K3.510 K1.676 K1.834 K2.267

M.P. González et al. / Polymer 46 (2005) 2783–2790 2787
procedures that contain all that is necessary for the modeling

but nothing more. For example, as follows we show a model

with six variables, one more than the previous model.

ln TA100 ZK1:94C4:64!10K3m
Dip
6 K1:18!10K8

!m
Dip
14 K0:005!mPS

3 C1:23!10K5

!mPS
5 K0:017!mGM

5 C1:25!10K9

!mGM
15 (4)

N Z 42; S Z 1:154; R2 Z 0:901;

F Z 53:251; p!0:0001; q2 Z 0:847; Scv Z 1:452
As can be seen in this new equation in spite of having a

relation among variables and cases superior to 5 [14,15], the

variance of the mutagenic activity of the dental monomers

explained for the variables in the Eq. (4) only increases in

1%. Also, the standard deviation shows a poor decrease

(2.51%) reason why it is not significant from a statistical

point of view to accept the inclusion of a new variable in the

model. In addition, the regression coefficient of the cross-

validation leave-one-out (q2) remains practically constant.

In this sense, the q2 values can be considered a measure of

the predictive power of a regression equation: whereas R2

can always be increased artificially by adding more

parameters (descriptors), q2 decreases if a model is over-

parameterized, and is therefore a more meaningful summary

statistic for QSAR models. For that reasons, the five-

dimensional models are characterized by the best



Table 4

Experimental, predicted and residual values of mutagenic property of

dental monomers in the test set

No. Obs (ln

(TA100))

Pred. (ln

(TA100))

Residual

43 0.115 0.778 K0.663

44 K0.576 K0.536 K0.040

45 K1.060 0.555 K1.615

46 K1.040 K0.817 K0.223

47 K3.960 K0.205 K3.755

48 K4.370 K8.013 3.643

49 K3.060 K4.331 1.271

50 8.750 10.542 K1.792

51 6.040 5.387 0.653

52 1.370 3.768 K2.398

53 0.110 1.983 K1.873
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compromise between predictive power and model complex-

ity. The addition of another variable does not lead to such an

increase in predictive power such that the complexity

increase is counterbalanced.

On the other hand, an analysis of potentially outlier

compounds was carrying out. Consideration of the outliers

removed from a QSAR is essential. An outlier to a QSAR is

identified normally by having a large standard residual and

can indicate the limits of applicability of a QSAR models.

Although it is acceptable to remove a small number of

outliers from QSAR it is noted that it is not acceptable to

remove the outlier repeatedly from a QSAR analysis simply

to improve a correlation. In the current work, the compound

31 present a large residual and should be consider as an

outlier. At removal of this compound from the training set

the following equation is obtained:

ln TA100 ZK1:621C3:96!10K3m
Dip
6 K7:90

!10K9!m
Dip
14 K0:005!mPS

3 C1:11

!10K5!mPS
5 K0:014!mGM

5 (5)

N Z 41 S Z 1:103 R2 Z 0:903 F Z 63:707 p!0:0001

q2 Z 0:852 Scv Z 1:324

Removal of the outlier did not improve the explanation

of experimental variance significantly of Eq. (3) when

compared to Eq. (5). It is not appropriate to remove

compounds from a data set simply to improve a correlation,

and indeed much important information may be gleaned

from the analysis of outliers omitted from a QSAR. For this

reason, here any compound was considered as a potential

outlier.

Finally, using Eq. (3), the efficacy of our model for

evaluating on external prediction set of 11 compounds was

corroborated. The result of this analysis is shown in the

following Table 4, in which we can see that the correlation

coefficient for the observed vs predicted mutagenic activity

of these dental monomers is 0.834, which is an excellent

value. In addition, the standard error of estimation was of

1.782.
Table 5

The contribution of different fragments to the mutagenic activity of the

dental monomers under study

Studied

Fragments

Fragment

contribution

Studied

Fragments

Fragment

contribution

F1 0.109 F10 1.210

F2 0.368 F11 K0.821

F3 0.799 F12 K1.170

F4 K0.227 F13 K1.924

F5 0.091 F14 K0.625

F6 K1.180 F15 K0.654

F7 K0.820 F16 0.192

F8 0.831 F17 0.165

F9 1.110 F18 0.317
3.1. Study of fragments contribution to mutagenic property

In these years, individual QSARs have been developed

for mutagenic endpoint. For instance, in the case of dental

monomers we demonstrate the potentialities of the TOPS-

MODE approach for the prediction of the mutagenic to

Salmonella typhimurium TA100 in two series of epoxides

compounds [14,39]. In this instance we find that for the case

of the aromatic epoxides the best correlation with the

mutagenicity is obtained when the molar refractivity is used

as bond weights. This shows an interesting behavior if taken

into account that the molar refractivity is the molecular
volume corrected with the refraction index of the molecule.

As we previously explained, the TOPS-MODE approach is

able to compute the contribution of any structural fragment

(real or hypothetical) to the biological property or activity

studied. In the present case, we can find the positive and

negative contributions of such fragments to the develop-

ment of the mutagenicity activity. In Table 5 and Fig. 2 we

show the fragments and their contributions to the muta-

genicity calculated from Eq. (3). The analysis of the

fragments F9 and F10 point out to their positive contribution

to molecular mutagenic. The mutagenic character of these

cyclic ethers epoxides obeys to their vast reactivity so that

the high torsion spanning of the three-member ring leads

steady to the ring cleavage. The internal bond angles of the

ring around 608 are far away from the 109.58 expected for a

tetrahedral arrangement at carbon atom or to the divalent

oxygen bonded to the carbon atoms in acyclic ethers. Since

the atoms are not close enough in order to allow the

maximal overlapping of the orbitals, thence the bonds are

not so strong like normal ether and it is more reactive. The

arrangement of the three atoms is normally accepted to look

like a banana shape bond. Essentially, epoxides are

electrophilic, reactive chemicals that may form DNA–

protein cross-links and induce mutagenesis. However, the



Fig. 2. Structures of selected fragments for which their contributions to the

mutagenic activities were calculated.
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chemical properties of the epoxides convert them in

potential precursors of dental resins, when these monomers

are photo excited, a polymerization process that leads to the

building of resins takes place.

On the other hand, this research shows that an increase in

the carbon lineal chain leads to an increase in the mutagenic

activity. This affirmation is based on the analysis of the set

of fragment from F1 to F3 where an increase in methyl group

in each fragment increases the contribution to the property

from 0.109 to 0.799. Nevertheless, when the branching of

the fragments is increased, the contribution to the mutagenic

property is minor as was observed in the fragments F4 and

F5. This type of contribution associated with the ramifica-

tion or branching of the carbon chain is in relation with the

target point of each dental monomer in special [13]. We can

observe that ramification in the groups of the linear aliphatic

chain causes sudden increase in the activity. The fragments

F3, F4, F5 have the same number of carbons (almost the

same hydrophobicity), but very different contributions. If

we compare aliphatic groups with different ramifications

and different number of methyl groups we would be able to

appreciate higher changes in their contributions. In this case,

an increase in the hydrophobicity leads to the amplification

of the analyzed property. We got to this conclusion in a

previous work [39], but the interpretation of this behavior

should be confirmed in a heterogeneous set of compounds.

Finally, when a bromine atom appears in some

fragments, their mutagenic activity increases (i.e. F16,

F17). This behavior has been previously observed [1–3].

Accordingly all new dental monomers used for forming

dental resins should not possess halogens in their structure.
4. Concluding remarks

We have shown that TOPS-MODE approach is able to

describe mutagenicity for heterogeneous set of dental

monomers with an appropriate degree of correlation and
robustness. In fact we have developed a model for

predicting mutagenicity of a data set of 41 dental

monomers. This model explains more than 89% of the

variance in the experimental mutagenicity with appropriate

predictive power.

On the other hand, along this series we demonstrate that

the spectral moments should be very useful tools in the

prediction of the mutagenic property in non-congeneric and

congeneric set of compounds. Therefore, this study could be

the beginning of important investigations in the field of the

mutagenesis of diverse series of compounds such as dental

monomers, pesticides, drugs and organic compounds.
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